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1 Review

1.1 Probability

A random experiment is any mechanism that produces outcomes which are not predictable
with certainty in advance.

Definition 1.1.1. (Sample Space). The set S, of all possible outcomes of a particular
random experiment is called the sample space of the experiment.

Definition 1.1.2. (Event). An event is any subset of S, including S itself.

Theorem 1.1.1. For any three events A,B and C:

(1) Commutativity: A ∪B = B ∪ A,A ∩B = B ∩ A

(2) Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C,A ∩ (B ∩ C) = (A ∩B) ∩ C

(3) Distribution Laws: A∩ (B ∪C) = (A∩B)∪ (A∩C), A∪ (B ∩C) = (A∪B)∩ (A∪C)

(4) DeMorgan’s Laws: (A ∪B)c = Ac ∩Bc, (A ∩B)c = Ac ∪Bc

Definition 1.1.3. (Disjoint/Mutually Exclusive). Two events A and B are disjoint
(mutually exclusive) if A ∩ B = ∅. The events A1, A2, . . . are disjoint (pairwise disjoint or
mutually exclusive) if Ai ∩ Aj = ∅ for all i ∕= j.

Definition 1.1.4. (Partition). If A1, A2, . . . , are disjoint and ∪∞
i=1Ai = S, then the col-

lection A1, A2, . . . forms a partition of S.

Definition 1.1.5. (Probability). Associated with each event A in the sample space S is
a probability P(A). Here P is a function defined on subsets of S and taking values between
[0, 1] and further are required to have the following three properties:

(P1) P(A) ≥ 0 for any event A,

(P2) P(S) = 1,

(P3) For every infinite sequence of disjoint events A1, A2, . . .,

P(
∞󰁞

i=1

Ai) =
∞󰁛

i=1

P(Ai). (1)

A probability measure (or simply probability) on a sample space S is the function P that
satisfies above properties (P1-P3).

Remark 1.1.1. * Ideally, P is defined on the collection of all subsets of S. However, it is
generally impossible to define such P function so that (P1-P3) are all satisfied. In general,
P is defined only on a collection F of subsets of S. The collection F is called a sigma
algebra (or Borel sigma field). It is required that the sets in F satisfy three conditions:
(1) The sample space S is in F ;
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(2) If A is in F , then Ac must also be in F ;
(3) If A1, A2, . . . is a countable collection of sets in F , then ∪∞

i=1Ai is also in F . The
sets in F are called ble sets. The triple (P,F , S) is called a probability space. For
practical purpose, we shall assume all the events of interest are measurable and therefore
the probabilities for these events are all well-defined. Simply write (P, S) as a probability
space.

Remark 1.1.2. Some properties of probability:

• If A1, . . . , An are disjoint, then P(∪n
i=1Ai) =

󰁓n
i=1 P(Ai).

• P(Ac) = 1− P(A).

• A ⊂ B implies P(A) ≤ P(B).

• P(A ∪B) = P(A) + P(B)− P(A ∩B) (additive rule).

• Inclusion-exclusion formula:

P(
n󰁞

i=1

Ai) =
n󰁛

i=1

P(Ai)−
󰁛

i<j

P(Ai∩Aj)+
󰁛

i<j<k

P(Ai∩Aj∩Ak)+· · ·+(−1)n−1P(A1∩A2∩. . .∩An)

• (Bonferroni) For events A1, . . . , An,
P(

󰁖n
i=1 Ai) ≤

󰁓n
i=1 P(Ai),

P(
󰁗n

i=1 Ai) ≥ 1−
󰁓n

i=1 P(A
c
i) =

󰁓n
i=1 P(Ai)− n+ 1.

Definition 1.1.6. (Conditional Probability). The conditional probability of the event
A given that the event B has occurred is denoted by P(A|B). If P(B) > 0, then

P(A|B) =
P(A ∩B)

P(B)
(2)

Note P(·|B) is also a probability measure that satisfies the properties (P1-P3) in Definition
1.1.5.

The conditional probability asks “if we know that an outcome is in the set B, what is
the probability that the event is also in A”, “what proportion of time that B happens, does
A also happen?”

Theorem 1.1.2. (Multiplication Rule for Conditional Probabilities). Suppose that
A1, A2, . . . , An are events such that P(A1 ∩ A2 ∩ · · · ∩ An−1) > 0. Then

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ A2 ∩ · · · ∩ An−1).

Suppose that A1, A2, . . . , An, B are events such that P(A1 ∩ A2 ∩ · · · ∩ An−1|B) > 0 and
P(B) > 0. Then

P(A1∩A2∩· · ·∩An|B) = P(A1|B)P(A2|A1∩B)P(A3|A1∩A2∩B) · · ·P(An|A1∩A2∩· · ·∩An−1∩B).
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Theorem 1.1.3. (Law of Total Probability). Suppose that the events B1, B2, . . . , Bk

form a partition of the space S and P(Bj) > 0 for j = 1, . . . , k. Then for every event A in
S,

P(A) =
k󰁛

j=1

P(Bj)P(A|Bj).

Also, if P(C) > 0,

P(A|C) =
k󰁛

j=1

P(Bj|C)P(A|Bj ∩ C).

Definition 1.1.7. (Independence). Two events A and B are independent if

P(A ∩B) = P(A)P(B).

It is denoted by A ⊥⊥ B.
Suppose P(A) > 0 and P(B) > 0, then A and B are independent if and only if P(A|B) =

P(A) if and only if P(B|A) = P(B). Therefore, A ⊥⊥ B says that knowing the occurrence or
non-occurence of A does not affect your belief about P (B) or the knowledge of it does not
help in predicting B, and vice versa.

Theorem 1.1.4. (Independence of Complements). If two events A and B are inde-
pendent, then A and Bc are also independent.

Definition 1.1.8. (Conditional Independence). Two events A1 and A2 are conditionally
independent given B if

P(A1 ∩ A2|B) = P(A1|B)P(A2|B).

It is denoted by (A1 ⊥⊥ A2)|B.

Definition 1.1.9. ((Mutually) Independent Events). The k events A1, . . . , Ak are
(mutually) independent if for every subset Ai1 , . . . , Aij of j of these events (j = 2, 3, . . . , k),

P(Ai1 ∩ · · · ∩ Aij) = P(Ai1) · · ·P(Aij).

The k events A1, . . . , Ak are (mutually) independent given an event B if for every
subset Ai1 , . . . , Aij of j of these events (j = 2, 3, . . . , k),

P(Ai1 ∩ · · · ∩ Aij |B) = P(Ai1 |B) · · ·P(Aij |B).

Remark 1.1.3. (Mutually) independent events are necessarily pairwise independent.

Theorem 1.1.5. Suppose A1, A2, and B are events such that P(A1∩B) > 0 and P(B) > 0.
Then A1 and A2 are conditionally independent given B if and only if P(A2|A1 ∩ B) =
P(A2|B).

Remark 1.1.4. If P(A) > 0 and P(B) > 0, then A and B cannot be simultaneously disjoint
and independent.
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Theorem 1.1.6. * (Relation Between Disjoint and Independence). Let A1, . . . , An

(n > 1) be disjoint (mutually exclusive) events. These events are also mutually independent
if and only if all the events except possibly one of them has probability 0.

Theorem 1.1.7. (Baye’s Theorem). Let the events B1, . . . , Bk form a partition of the
space S such that P(Bj) > 0 for j = 1, . . . , k and let A be an event such that P(A) > 0.
Then for i = 1, . . . , k,

P(Bi|A) =
P(Bi)P(A|Bi)󰁓k
j=1 P(Bj)P(A|Bj)

. (3)

Note that the denominator is just by applying the law of total probability for P (A).

Theorem 1.1.8. (Baye’s Theorem (Conditional Version)). Let the events B1, . . . , Bk

form a partition of the space S such that P(Bj) > 0 for j = 1, . . . , k and let A,C be two
events such that P(A ∩ C) > 0. Then for i = 1, . . . , k,

P(Bi|A ∩ C) =
P(Bi|C)P(A|Bi ∩ C)

󰁓k
j=1 P(Bj|C)P(A|Bj ∩ C)

. (4)

Remark 1.1.5. When the partition consists of countably many of sets B1, B2, . . ., above
Baye’s theorems continue to hold with the summation replaced by

󰁓∞
j=1.

1.2 Combinatorics

Theorem 1.2.1. (Theorem of Counting) If a random experiment consists of k separate
tasks, the ith of which can be done in ni ways, i = 1, 2, · · · , k, then the entire experiment
can be done in

󰁔k
i=1 ni ways.

Theorem 1.2.2. (Permutations – ordered without replacement). A permutation is an
arrangement of objects in a particular order. The number of distinct orderings of k items
selected without replacement from a collection of different n objects (0 ≤ k ≤ n) is Pn,k =

n!
(n−k)!

, which reads “the number of k permutation out of n”.

Theorem 1.2.3. (Combinations – unordered without replacement). A combination is
unordered group of objects. The number of distinct subsets of size k that can be chosen
from a set of n different object is Cn,k = n!

k!(n−k)!
. We use

󰀃
n
k

󰀄
to denote Cn,k, which reads

“the number of k combination out of n, or n choose k”.

Theorem 1.2.4. (Binomial theorem). For all numbers x and y and each positive integer
n,

(x+ y)n =
n󰁛

k=0

󰀕
n

k

󰀖
xkyn−k.
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Theorem 1.2.5. For all n and all k = 0, 1, . . . , n,
󰀕
n

k

󰀖
=

󰀕
n

n− k

󰀖
.

Theorem 1.2.6. * (Multinomial Coefficient). The number of ways to partition a set of
n items into k distinguishable subsets of sizes n1, . . . , nk where n1 + · · ·+ nk = n is

󰀕
n

n1, . . . , nk

󰀖
:=

n!

n1!n2! · · ·nk!

Theorem 1.2.7. * (Multinomial Theorem). For all real numbers x1, . . . , xk and each
positive integer n,

(x1 + · · ·+ xk)
n =

󰁛󰀕
n

n1, . . . , nk

󰀖
xn1
1 · · · xnk

k

where summation extends over all possible combinations of nonnegative integers n1, . . . , nk

such that n1 + · · ·+ nk = n.

Remark 1.2.1. (ordered, with replacement) The total number of arrangements of k objects
selected from n different objects with replacement is nk.

Remark 1.2.2. (unordered, with replacement) The total number of distinct subsets of k
objects selected from n different objects with replacement is

󰀃
n+k−1

k

󰀄
.

1.3 Random Variables

Definition 1.3.1. (Random Variable (Vector)). Let S be the sample space for an
experiment. Let X : S 󰀁→ X , where X is a subset of Rd for some d = 1, 2, . . ., denote a
random variable (when d = 1) or random vector (when d > 1). The set X is called the
range of X or the sample space of X.

Remark 1.3.1. Throughout the notes, when orientation matters, vectors will always be
taken as column vectors. Thus when d > 1, a Rd-valued random vector X can be written
as X = (X1, . . . , Xd)

T , where superscript T denotes the transpose. When the context is
clear and the orientation does not matter, we may simply treat a multi-dimensional x as a
vector by writing x = (x1, . . . , xd). We shall use the terminology random variable for any
real-valued X.

Definition 1.3.2. (Probability Induced by a Random Variable (Vector)). Suppose
we have a probability space (P, S). Let X : S 󰀁→ X be a random variable (or random
vector). The probability that the value of X will belong to some subset C ⊂ Rd (such that
{s : X(s) = C} is an event) is given by

PX(C) := P(X ∈ C) = P({s ∈ S : X(s) ∈ C})

7
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Here PX define a probability function on the subsets of X and must satisfy conditions
(P1-P3). The (probability) distribution of X is described by the function PX , hence by the
collection of all the probabilities PX(C) = P(X ∈ C) for all the sets C so that {s : X(s) ∈ C}
is an event .

Remark 1.3.2. * Following above definition, in fact, {s : X(s) ∈ C} is an event (thus
measurable) for almost all kinds of subsets C ⊂ Rd that most readers will be able to
imagine. To avoid technicalities, we shall assume {s : X(s) ∈ C} is an event for any subset
C ⊂ Rd. We shall not concern with measurability thereafter.

Theorem 1.3.1. For real-valued X (that is, X ⊂ R), the distribution of X is fully described
by the (cumulative) distribution function (c.d.f.)

F (x) := PX((−∞, x]) = P(X ≤ x), −∞ < x < ∞.

The c.d.f. F has the following properties:

(1) limx→∞ F (x) = 1, limx→−∞ F (x) = 0.

(2) If x1 < x2, then F (x1) ≤ F (x2) (monotonic function).

(3) limh→0+ F (x+ h) = F (x) (right continuous function).

(4) limh→0+ F (x− h) := F (x−) = F (x)− P(X = x) = P(X < x).

Theorem 1.3.2. If two random variables X and Y have the same c.d.f., then X and Y
have the same probability distribution.

Theorem 1.3.3. * The c.d.f. F of a random variable X can have at most countably many
discontinuity points.

Definition 1.3.3. (Discrete Random Variable). Let X be a random variable with c.d.f.
F. It is a called discrete random variable if X can take only a finite number of different
values x1, . . . , xk, or, at most countably many different values x1, x2, . . .. Equivalently, its
c.d.f. F has at most countably many jumps (thus a step function). Indeed,

F (x) =
󰁛

j:xj≤x

P(X = xj)

where P(X = xj) is the size of the jump of F at xj. We let f(xj) = P (X = xj). The
function f is called the probability mass function (p.m.f.). The set X0 := {x : f(x) > 0}
is called the support of X.

Definition 1.3.4. (Continuous Random Variable). Let X be a random variable with
c.d.f. F. It is called a continuous random variable if there exists a nonnegative function
f : R 󰀁→ R such that

F (x) =

󰁝 x

−∞
f(t)dt, −∞ < x < ∞.

This function f is called probability density function (p.d.f.). If f(x) is continuous
at x, then f(x) = F ′(x). Since f is defined on the R, it is customary to consider f
to be f(x) {x ∈ X0}, i.e., the non-trivial part of p.d.f f is defined only on the support
X0 = {x : f(x) > 0}.

8
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Remark 1.3.3.

(1) For a discrete random variable X, the p.m.f. f must satisfy the following two require-
ments: f(x) ≥ 0 for all x; and if the sequence x1, x2, . . . include all the possible values
of X, then

󰁓∞
i=1 f(xi) = 1.

(2) For a continuous random variable X, the p.d.f. f must satisfy the following two
requirements: f(x) ≥ 0 for all x and

󰁕∞
−∞ f(x)dx = 1.

(3) For a continuous random variable X, PX(x) = P(X = x) = 0 at any individual value
x. Therefore, P(a < X < b) = P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b). In
particular, F (x) is continuous.

(4) * The density function of a continuous random variable is not uniquely defined. If
f1(x) = f2(x) for almost all x and F1(x) =

󰁕 x

−∞ f1(t)dt and F2(x) =
󰁕 x

−∞ f2(t)dt, then
F1(x) = F2(x). In this case, f1 and f2 are both density functions for X. In general,
one can adopt the density function that is continuous if such one exists.

(5) * There exists some c.d.f. F that is continuous but cannot be defined as F (x) =󰁕 x

−∞ f(t)dt, i.e., F does not come from any density function. Therefore, the associated
random variable X is neither discrete nor continuous. We shall not consider this type
of random variable.

(6) * There exists some random variable that has a mixed distribution of discrete and
continuous distributions. For example, X = c (X∗ ≤ c) + X∗ (X∗ > c) for some
continuous random variable X∗ and some constant c.

Theorem 1.3.4. For a discrete random variable X with p.m.f. f , the probability of each
subset C of the real line can be determined through

P(X ∈ C) =
󰁛

x∈C

f(x).

Theorem 1.3.5. For a continuous random variable X with p.d.f. f , the probability of each
bounded closed interval [a, b] can be determined through

P(a ≤ X ≤ b) =

󰁝 b

a

f(x)dx.

More generally, for a subset C ⊂ R,

P(X ∈ C) =

󰁝

C

f(x)dx.

9
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Definition 1.3.5. (Empirical CDF) . Suppose a random variable X is repeated observed,
whose values are x1, . . . , xn (a random sample), the empirical cumulative distribution func-
tion (ECDF) for the sample is

F̂ (x) =
1

n

n󰁛

i=1

{xi ≤ x} , for x ∈ R

In other words, the ECDF is the proportion of the sample that is less than or equal to x.
The corresponding p.d.f for ECDF is given heuristically as

f̂(x) = lim
h→0

F̂ (x+ h)− F̂ (x− h)

2h

=
1

n
lim
h→0

󰁓n
i=1 {x− h < xi ≤ x+ h}

2h
.

Remark 1.3.4. The empirical CDF turns out to be a good approximation to the actual
CDF of the random variable X, as sample size n grows:

F̂ (x) → F (x), for all x ∈ R.

Precise probabilistic meaning of this approximation will be dealt with later.
The following is an example where red curve is the CDF of N(0, 1), and blue curve is

the ECDF from a random sample of N(0, 1) of size 20.

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

y

1.4 Expectation and Moments

Definition 1.4.1. (Expectation or Mean). Let X be a random variable with c.d.f. F.
The expectation of X denoted by E(X) is given by

µX := E(X) =

󰁝 ∞

−∞
xdF (x),

10
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provided the value exists (possibly ±∞).
(1 )Here, dF (x) is heuristically interpreted as f(x)dx if X is continuous and has p.d.f.

f . In this case E(X) =
󰁕∞
−∞ xf(x)dx.

(2) If X is discrete and has p.m.f. f , then E(X) =
󰁓

x∈X xf(x).
(3) In both cases, the expectation exists and is finite if E(|X|) < ∞.

Remark 1.4.1. Interpretation of expectation E(X). (1) a weighted average of the possible
values of X, i.e., the center of the distribution; (2) a “long run” average (e.g. betting a
coin); (3) population mean (e.g. expected value of U.S. household income).

If X can be repeatedly observed and the observed values are x1, . . . , xn (with a large

sample size), then one might expect that using the ECDF F̂ in replace of the true F would
return a good approximation to E(X): indeed,

󰁝
xdF̂ (x) =

󰁝
xf̂(x)dx ≈

󰁓n
i=1 xi

n
:= x̄

giving us the well-known heuristic estimation by sample mean

E(X) ≈ x̄.

Definition 1.4.2. (Expectation of a Function of Random Variables). Let X be a
random variable, possibly a random vector, with p.m.f. or p.d.f f . Let g denote a real-valued
function defined on X . Then

E(g(X)) =

󰀫󰁕∞
−∞ g(x)f(x)dx if X is continuous
󰁓

x∈X g(x)f(x) if X is discrete,

provided the integral or the sum exists. Special case: g(X) = X.

Remark 1.4.2. Let X be a random variable, possibly a random vector and a, b, and c be
constants. Then for any real-valued function g1 and g2 whose expectations exists,

(1) E(ag1(X) + bg2(X) + c) = aEg1(X) + bEg(X2) + c

(2) If g1(x) ≥ g2(x) for all x, then Eg1(X) ≥ Eg2(X).

Definition 1.4.3. (Moments). For each random variable X and every positive integer k,
the expectation E(Xk) is called the kth moment of X. It is said that the kth moment
exists if and only if E(|X|k) < ∞ (note: E(|X|k) possibly equals to ∞). The expectation
E[(X − µX)

k] is called the kth central moment.
If the distribution of X is symmetric about zero, then all finite odd moments are zero

(if the moments exist).

11
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Definition 1.4.4. (Variance and Standard Deviation). The variance of a random
variable X is given by

Var(X) = E(X − E(X))2 = E(X2)− [E(X)]2.

The positive square root of Var(X) is the standard deviation of X. We denote the
standard deviation by σX , hence Var(X) = σ2

X .
If X can be repeatedly observed and the observed values are x1, . . . , xn (with a large

sample size), then

Var(X) ≈
󰁓n

i=1(xi − x̄)2

n
, σX ≈

󰁵󰁓n
i=1(xi − x̄)2

n

Remark 1.4.3. (1) The variance Var(X) measures the spread of the distribution of X. (2)
The variance of any constant is 0. (3) The variance Var(X) is measured in the squared units
of X; while the standard deviation σX is measured in the same unit as X.

Definition 1.4.5. (Covariance and Correlation). Let X and Y be random variables
having finite means and finite variances σ2

X and σ2
Y . The covariance of X and Y is defined

as
Cov(X, Y ) = E[(X − EX)(Y − EY )] = E(XY )− E(X)E(Y ).

The correlation of X and Y , denoted by ρ(X, Y ), is defined as

ρ(X, Y ) =
Cov(X, Y )

σXσY

.

If the pair of (X,Y) can be repeatedly observed and the observed values are (x1, y1), . . . , (xn, yn)
(with a large sample size), then

Cov(X, Y ) ≈
󰁓n

i=1(xi − x̄)(yi − ȳ)

n
.

Remark 1.4.4. (1) Covariance and correlation measures only linear relationship.

(2) If Y = aX + b for some a ∕= 0, then |ρ(X, Y )| = 1.

(3) If two random variables X and Y are uncorrelated if and only if E(XY ) = E(X)E(Y ).

(4) (independence) Let X and Y be two random variables. We say X and Y are inde-
pendent, if their joint p.d.f or p.m.f factors into products of individual p.d.f or p.m.f.
If two random variables X and Y are independent, then X and Y are uncorrelated.
The converse is not true (i.e., being uncorrelated does not imply independence). See
Theorem 1.5.4 for more.

Remark 1.4.5. (Properties of Covariance). Let X, Y be two random variables. Then

12
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(1) Cov(X, Y ) = Cov(Y,X).

(2) Cov(X,X) = Var(X).

(3) Cov(a+ bX, c+ dY ) = bdCov(X, Y ), for any constants a, b, c, d.

(4) Cov(aX + bY, cZ) = acCov(X,Z) + bcCov(Y, Z), for any constants a, b, c.

Theorem 1.4.1. If X1, . . . , Xd are independent or (mutually) uncorrelated random variables
with finite variances and c1, . . . , cd are constants, then

Var(a1X1 + · · ·+ adXd) = a21Var(X1) + · · ·+ a2dVar(Xd).

Theorem 1.4.2. If X1, . . . , Xd are random variables with finite variances, then

Var
󰀓 d󰁛

i=1

Xi

󰀔
=

d󰁛

i=1

Var(Xi) + 2
󰁛󰁛

i<j

Cov(Xi, Xj)

Suppose in addition, X1, . . . , Xd are (mutually) uncorrelated, then

Var
󰀓 d󰁛

i=1

Xi

󰀔
=

d󰁛

i=1

Var(Xi).

An important case when you have two random variables X and Y :

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2abCov(X, Y ).

If in addition, X and Y are uncorrelated, then

Var(aX + bY ) = a2Var(X) + b2Var(Y ).

Definition 1.4.6. (Moment Generating Functions). Let X be a random variable. The
moment generating function (m.g.f.) of X, denoted by MX(t), is

MX(t) := E(etX),

provided that the expectation exists and is finite for |t| < δ for some number δ > 0.

Theorem 1.4.3. Let X be a random variable having a m.g.f. MX(t) for |t| < δ for some
δ > 0. Then for each integer n > 0, E(Xn) exists and is finite, and

MX(t) =
∞󰁛

n=0

tnE(Xn)/n!, |t| < δ.

Also, the nth moment of X is equal to the nth derivative of MX(t) evaluated at t = 0:

dn

dtn
MX(t)

󰀏󰀏󰀏
t=0

= E(Xn). (5)

13
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Theorem 1.4.4. Suppose X has m.g.f. MX . For any constants a and b, the m.g.f. of the
random variable aX + b is given by

MaX+b(t) = ebtMX(at).

Theorem 1.4.5. Let X and Y be two random variable whose m.g.f. exist. X and Y have
the same distribution if and only if there exists some δ > 0 such that MX(t) = MY (t) for
|t| < δ.

Remark 1.4.6. A moment generating function uniquely determines the probability distri-
bution of a random variable.

Previous discussion focuses on random variables. We turn to random vectors now. For
a d-dimensional random vector X = (X1, . . . , Xd)

T , the expectation of X can be similarly
defined as

E(X) = [E(X1), . . . , E(Xd)]
T .

Remark 1.4.7. (Properties of Expectation of Random Vectors). Let X and Y be
a dX-dimensional and dY dimensional random vectors respectively, A be a m × dX matrix
of constants, B be a m× dY matrix of constants and b be a m-dimensional constant vector.
Then

(1) E(X) = (E(XT ))T

(2) E(AX +BY + c) = AE(X) +BE(Y ) + c

If X is a m× n random matrix, then we can similarly define its expectation as

E(X) =

󰀵

󰀹󰀷
E(X1,1) . . . E(X1,n)

...
. . .

...
E(Xm,1) . . . E(Xm,n)

󰀶

󰀺󰀸 .

Remark 1.4.8. (Properties of Expectation of Random Matrix). Suppose A,B,C
and D are non-random matrices and X and Y are random matrices. Assume that all matrix
dimensions are compatible. Then

E(AXB + CY D) = AE(X)B + CE(Y )D.

Definition 1.4.7. (Covariance between Random Vectors). LetX = (X1, . . . , Xm)
T , Y =

(Y1, . . . , Yn)
T be two random vectors. The covariance of X and Y is given by

Cov(X, Y ) = E[(X − EX)(Y − EY )T ] = E(XY T )− E(X)E(Y )T .

14
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It can also be written as

Cov(X, Y ) =

󰀵

󰀹󰀹󰀹󰀷

Cov(X1, Y1) Cov(X1, Y2) . . . Cov(X1, Yn)
Cov(X2, Y1) Cov(X2, Y2) . . . Cov(X2, Yn)

...
...

. . .
...

Cov(Xm, Y1) Cov(Xm, Y2) . . . Cov(Xm, Yn)

󰀶

󰀺󰀺󰀺󰀸
.

Remark 1.4.9. (Properties of Covariance between Random Vectors). Let X, Y
and Z be three random vectors of dimensions dX , dY , dZ respectively. Let A1, A2 and A3 be
matrices of constants of dimensions m × dX ,m × dY and n × dZ respectively. Let c1 and
c2 be vectors of constants of dimensions m and n respectively. Then covariance operation
satisfies

Cov(A1X + A2Y + c1, A3Z + c2) = A1Cov(X,Z)AT
3 + A2Cov(Y, Z)A

T
3

Cov(X, Y ) = [Cov(Y,X)]T

In particular:

(1) Cov(A1X,A3Z) = A1Cov(X,Z)AT
3 .

(2) Cov(X + c, Z) = Cov(X,Z), for any constant vector c.

(3) Cov(X + Y, Z) = Cov(X,Z) + Cov(Y, Z).

The covariance matrix of a random vector is the outcome of a special case of covariance
operation defined in the following.

Definition 1.4.8. (Covariance Matrices of Random Vectors). Let X = (X1, . . . , Xd)
T

be a d-dimensional random vector. The covariance matrix of X is given by

Cov(X,X) = E[(X − EX)(X − EX)T ] = E(XXT )− E(X)E(X)T .

The covariance matrix of X can also be written as

Var(X) := Cov(X,X) =

󰀵

󰀹󰀹󰀹󰀷

Cov(X1, X1) Cov(X1, X2) . . . Cov(X1, Xd)
Cov(X2, X1) Cov(X2, X2) . . . Cov(X2, Xd)

...
...

. . .
...

Cov(Xd, X1) Cov(Xd, X2) . . . Cov(Xd, Xd)

󰀶

󰀺󰀺󰀺󰀸
.

Var(X) is commonly written as ΣX .

Remark 1.4.10. (Properties of Covariance Matrix). Any d × d covariance matrix Σ
satisfies

(1) Symmetric: Σ = ΣT .

(2) Positive semidefinite: for any d× 1 vector a ∕= 0, aTΣa ≥ 0.

15
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Remark 1.4.11. (Properties of Covariance Matrix). Let X and Y be two dimensional
random vectors of dimensions dX and dY . Let A,B be matrices of dimensions d × dX and
d× dY respectively. Let c be a d dimensional vector of constants.

(1) Var(AX + c) = AVar(X)AT .

(2) Var(AX +BY ) = AVar(X)AT +BVar(Y )BT + 2ACov(X, Y )BT .

Definition 1.4.9. (Moment Generating Functions for Random Vectors). Let X be
a d-dimensional random vector. The moment generating functions of X, denoted by MX(t),
is

MX(t) := E(et
TX), t ∈ Rd

provided that the expectation exists and is finite for all t such that ||t|| < δ for some number
δ > 0.

1.5 Joint Distributions and Marginal Distributions

Definition 1.5.1. (Distribution for Random Vectors). Let X : S 󰀁→ X , where X is a
subset of Rd . The c.d.f. is define as the function F : Rd 󰀁→ [0, 1] given by

F (x) := F (x1, . . . , xd) = P(X ∈ (−∞, x1]× (−∞, x2]× · · · (−∞, xd])

If X is written in terms of component random variables, i.e., X = (X1, . . . , Xd), then

F (x) = P(X1 ≤ x1, . . . , Xd ≤ xd).

The c.d.f. F is also called the joint c.d.f. of the random variables X1, . . . , Xd.
If the distribution function F of X can be written as

F (x1, . . . , xd) =

󰁝 x1

−∞
· · ·

󰁝 xd

−∞
f(t1, . . . , td)dt1 · · · dtd (6)

for some function f on Rd, then X is said to have a continuous distribution with density f .
In particular,

f(x1, . . . , xd) =
∂dF

∂x1 . . . ∂xd

.

Remark 1.5.1. For X = (X1, . . . , Xd), whose range space X is a subset of Rd. If the
range X is countable set, then X is said to have a discrete distribution with p.m.f. given
by f(x) := f(x1, . . . , xd) = P(X1 = x2, . . . , Xd = xd). In this case, the distribution function
F of X can be similarly written as Eqn.(6) , but with integration replaced by summations.

16
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Definition 1.5.2. (Marginal Distribution). Consider a collection of random variables
X1, . . . , Xd, where Xi : S 󰀁→ Xi ⊂ R for i = 1, . . . , d. For each i = 1, . . . , d, the marginal
distribution of Xi is given by

P(Xi ∈ Ci) = P(Xi ∈ Ci, and Xj ∈ Xj ∀j ∕= i), Ci ⊂ Xi

Definition 1.5.3. (Marginal c.d.f.). Consider a collection of random variablesX1, . . . , Xd,
where Xi : S 󰀁→ Xi ⊂ R for i = 1, . . . , d. The marginal c.d.f of X1 is given by

F1(x1) := P(X1 ≤ x1) = P(X1 ≤ x1, X2 < ∞, X3 < ∞, . . . , Xd < ∞)

The marginal c.d.f. for Xi for i = 2, . . . , d are similarly defined.

Theorem 1.5.1. (Marginal p.m.f. for Discrete Random Variables). Consider a
collection of discrete random variables X1, . . . , Xd with joint p.m.f. f(x1, . . . , xd), where
Xi : S 󰀁→ Xi ⊂ R for i = 1, . . . , d. The marginal p.m.f. of X1 is given by

f1(x1) := P(X1 = x1) =
󰁛

x2∈X2

· · ·
󰁛

xd∈Xd

f(x1, x2, x3, . . . , xd)

The marginal p.m.f. for Xi for i = 2, . . . , d are similarly defined.

Theorem 1.5.2. (Marginal p.d.f. for Continuous Random Variables). Consider a
collection of continuous random variables X1, . . . , Xd with joint p.d.f. f(x1, . . . , xd), where
Xi : S 󰀁→ Xi ⊂ R for i = 1, . . . , d. The marginal p.d.f. of X1 is given by

f1(x1) :=

󰁝 ∞

−∞
· · ·

󰁝 ∞

−∞
f(x1, x2, x3, . . . , xd)dx2 · · · dxd

The marginal p.d.f. for Xi for i = 2, . . . , d are similarly defined.

Definition 1.5.4. (Independence of a Collection of Random Variables ). Consider
a collection of random variables X1, . . . , Xd where Xi : S 󰀁→ Xi ⊂ R for i = 1, . . . , d. We
say X1, . . . , Xd are independent if for any collection of sets C1, . . . , Cd, Ci ⊂ Xi, i = 1, . . . , d,
the events X1 ∈ C1, . . . , Xd ∈ Cd are independent, that is,

P(X1 ∈ C1, . . . , Xd ∈ Cd) = P(X1 ∈ C1) · · ·P(Xd ∈ Cd)

Definition 1.5.5. (Independence of Random Vectors). Consider two random vectors
(X1, . . . , Xm) and (Y1, . . . , Yn). We say that the two random vectors are independent if for
any sets C1, . . . , Cm, C̃1, . . . , C̃n, the events {X1 ∈ C1, . . . , Xm ∈ Cm} and {Y1 ∈ C̃1, . . . , Yn ∈
C̃n} are independent, that is,

P(Xi ∈ Ci, Yj ∈ C̃j, i = 1, . . . ,m, j = 1, . . . , n) = P(Xi ∈ Ci, i = 1, . . . ,m)P(Yj ∈ C̃j, j = 1, . . . , n)
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Theorem 1.5.3. (1) If the collection of random variables X1, . . . , Xd are independent,
then for any real-valued functions g1, . . . , gd where gj : Xj 󰀁→ R, j = 1, . . . , d, the
collection of random variables g1(X1), . . . , gd(Xd) are also independent.

(2) If the collection of random variables X1, . . . , Xd are independent, for some m such
that 1 ≤ m < d, then for any real valued function g1 : X1 × · · · × Xm 󰀁→ R and
g2 : Xm+1 × · · ·× Xd 󰀁→ R, it holds that

g1(X1, . . . , Xm) g2(Xm+1, . . . , Xd).

Theorem 1.5.4. (Characterization of Independence) Consider a collection of random
variables X1, . . . , Xd. For each i = 1, . . . , d, let Xi and Fi denote the range and marginal
c.d.f. for Xi respectively .

(1) X1, . . . , Xd are independent if and only if F (x1, . . . , xd) = F1(x1) · · ·Fd(xd) for all
x1, . . . , xd.

(2) X1, . . . , Xd are independent if and only if for any sequence of bounded real-valued
functions g1, . . . , gd where gj : Xi 󰀁→ R, j = 1, . . . , d,

E[g1(X1)g2(X2) · · · gd(Xd)] = E[g1(X1)] · · ·E[gd(Xd)].

(3) Suppose X1, . . . , Xd has joint p.m.f. given by f . For 1 ≤ i ≤ d, let fi denote the
marginal p.m.f. for Xi. Then X1, . . . , Xd are independent if and only if f(x1, . . . , xd) =
f1(x1) · · · fd(xd) for all x1, . . . , xd.

(4) Suppose X1, . . . , Xd has joint p.d.f. given by f . For 1 ≤ i ≤ d, let fi denote the
marginal p.d.f. for Xi. Then X1, . . . , Xd are independent if and only if f(x1, . . . , xd) =
f1(x1) · · · fd(xd) for (almost) all x1, . . . , xd.

(5) Suppose X1, . . . , Xd has joint p.d.f. or p.m.f. given by f . Then X1, . . . , Xd are
independent if and only if there exist functions h1, . . . , hd such that for every xi ∈
R, i = 1, . . . , d,

f(x1, . . . , xd) = h1(x1) · · ·hd(xd).

Theorem 1.5.5. Suppose X1, . . . , Xd are independent random variables. For each i =
1, . . . , d, let MXi

denote the m.g.f. of Xi. Let Y =
󰁓d

i=1 Xi. Then for every t such that
MXi

(t) is finite for i = 1, . . . , d,

MY (t) =
d󰁜

i=1

MXi
(t).
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1.6 Conditional Distributions

Definition 1.6.1. (Conditional Distribution/p.m.f. ). Let X and Y have a discrete
joint distribution p.m.f. f . Let fY denotes the marginal p.m.f. of Y . For each y such that
fY (y) > 0, define

fX|Y (x|y) =
f(x, y)

fY (y)

Then fX|Y is called the conditional p.m.f. of X given Y . For values of y such that fY (y) = 0,
we are free to define fX|Y (x|y) so long as fX|Y (x|y) is a p.m.f. of X. Just like conditional
probabilities of events, f(·|y) is a valid p.m.f. for a fixed y.

The discrete distribution whose p.m.f. is fX|Y (·|y) is called the conditional distribution
of X given Y = y. That is, the conditional distribution of X given Y = y is given by

P(X ∈ C|Y = y) =
󰁛

x∈C

fX|Y (x|y).

The conditional c.d.f. of a random variable X given Y = y is given by

FX|Y (t|y) =
󰁛

x∈(−∞,t]

fX|Y (x|y).

Definition 1.6.2. (Conditional Distribution/p.d.f. ). Let X and Y have a joint
continuous distribution p.d.f. f . Let fY denotes the marginal p.d.f. of Y . For each y such
that fY (y) > 0, define

fX|Y (x|y) =
f(x, y)

fY (y)

Then fX|Y is called the conditional p.d.f. of X given Y . For values of y such that fY (y) = 0,
we are free to define fX|Y (x|y) so long as fX|Y (x|y) is a p.d.f. of X. Just like conditional
probabilities of events, f(·|y) is a valid p.d.f. for a fixed y.

The continuous distribution whose p.d.f. is fX|Y (·|y) is called the conditional distribution
of X given Y = y. That is, the conditional distribution of X given Y = y is given by

P(X ∈ C|Y = y) =

󰁝

C

fX|Y (x|y)dx.

The conditional c.d.f. of a random variable X given Y = y is given by

FX|Y (t|y) =
󰁝 t

−∞
fX|Y (x|y)dx.

Remark 1.6.1. When the context is clear, we shall use a shorthand notation f(x|y) for the
conditional p.m.f. or p.d.f. fX|Y (x|y), and use F (x|y) for the conditional c.d.f. FX|Y (x|y).
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Theorem 1.6.1. (Independence through Conditional Distributions). Suppose that
X and Y are two random variables having a joint p.m.f. or p.d.f. f , and, marginal p.m.f or
p.d.f. fX and fY respectively. Then X and Y are independent if and only if for every value
of y such that fY (y) > 0 and every value of x,

fX|Y (x|y) = fX(x).

A similar statement holds with the roles of X and Y switched.

Definition 1.6.3. (Conditionally independent Random Variables). Let Y be a ran-
dom vector with joint p.d.f. or p.m.f. fY . Several random variables X1, . . . , Xd are condi-
tionally independent given Y , if for all y such that fY (y) > 0, we have

fX|Y (x|y) = fX|Y (x1, . . . , xd|y) =
d󰁜

i=1

fi(xi|y)

where f(x|y) is the conditional (multivariate) p.d.f. or p.m.f. of X given Y = y and fi(xi|y)
the conditional (univariate) p.d.f. or p.m.f. of Xi given Y = y

Theorem 1.6.2. (Bayes’ Theorem for Random Variables). If fY (y) is the marginal
p.m.f. or p.d.f. of a random variable Y and f(x|y) is the conditional p.m.f. or p.d.f. of X
given Y = y, then

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
.

Definition 1.6.4. (Conditional Expectation). Let (X, Y ) be random variables with
range X × Y ⊂ R × R and let F (·|y) denote the conditional c.d.f. of X given Y = y. Let
g : X 󰀁→ R such that E(|g(X)|) < ∞. The conditional expectation of X given by Y = y is
given by

E(g(X)|Y = y) =

󰁝 ∞

−∞
g(x)dF (x|y),

provided the value exists (possibly ±∞).
(1 )Here, dF (x|y) is heuristically interpreted as f(x|y)dx if X has a continuous condi-

tional distribution given Y = y with conditional p.d.f. f(x|y). In this case E(g(X)|Y =
y) =

󰁕∞
−∞ g(x)f(x|y)dx.

(2) If X has a discrete conditional distribution given Y = y with conditional p.m.f.
f(x|y), then E(g(X)|Y = y) =

󰁓
x∈X g(x)f(x|y).

(3) Note that in both cases, E(g(X)|Y = y) are functions of y. These functions may be
computed before Y is observed. Therefore, it is legitimate to consider conditional expecta-
tion E(g(X)|Y ) as a random variable (a function of Y ) whose value becomes E(g(X)|Y = y)
when Y = y is observed.

Remark 1.6.2. Let X, Y be two independent random variables. Then E(X|Y ) = E(X).

Definition 1.6.5. (Conditional Variance). * Let X, Y be two random variables. The
variance of the conditional distribution of X given Y = y is given by

Var(X|Y = y) = E{[X − E(X|Y = y)]2|Y = y} = E[X2|Y = y]− [E(X|Y = y)]2.

In short, Var(X|Y ) = E[X2|Y ]− (E(X|Y ))2.
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Theorem 1.6.3. * Let X, Y be two random variables.

(1) (Law of iterated expectation) E[E(g(X)|Y )] = E[g(X)] for any g : X 󰀁→ R such that
E(|g(X)|) < ∞.

(2) For any function r of X and Y , E(r(X, Y )|X = x) = E(r(x, Y )|X = x).

(3) For any functions g1 of X and g2 of Y , E(g1(X)g2(Y )|X) = g1(X)E(g2(Y )|X).

(4) (Law of total probability for variance) Var(X) = E[Var(X|Y )] + Var[E(X|Y )].

1.7 Functions of Random Variables

Definition 1.7.1. (Monotonic Functions). Consider a real-valued function f. If for
x1 < x2, f(x1) < f(x2). Then we call f an increasing function. If for x1 < x2,
f(x1) ≤ f(x2). Then we call f a weakly increasing function. The decreasing and
weakly decreasing functions are similarly defined.

Given a random variable X : S 󰀁→ X with known distribution, consider another random
variable Y = g(X) for some known function g. Let Y = g(X ) be the range of Y . The
probability distribution of Y can be computed as, for any set C ⊂ Y ,

P(Y ∈ C) = P(g(X) ∈ C) = P({x ∈ X : g(x) ∈ C})

If X is discrete random variable (thus Y is also discrete), then the p.m.f. of Y is

fY (y) = P(Y = y) =
󰁛

x∈X :g(x)=y

fX(x).

If X is continuous random variable with p.d.f. fX (thus Y is also continuous), then the
c.d.f. of Y is

FY (y) = P(Y ≤ y) =

󰁝

{x∈X :g(x)≤y}
fX(x)dx.

Suppose in addition, that g is one-to-one (i.e. injective) function. We have the following
results.

Theorem 1.7.1. Suppose X is a random variable with p.m.f. or p.d.f. fX . Consider
Y = g(X) for g : R 󰀁→ R. Let X0 := {x : fX(x) > 0} and Y0 := g(X0). Suppose g is a
one-to-one and continuously differentiable function on X0. Let g

−1 denotes the inverse of g.

(1) If g is an increasing function on X0, then FY (y) = FX(g
−1(y)) for all y ∈ Y0.

(2) If g is a decreasing function on X0, then FY (y) = 1− FX(g
−1(y)−) for all y ∈ Y0.

(3) If X is discrete, then Y has p.m.f. given by fY (y) = fX(g
−1(y)) for all y ∈ Y0.

(4) If X is continuous and in addition |g′(x)| > 0 on X0, then Y has p.d.f. given by

fY (y) = fX(g
−1(y))

󰀏󰀏󰀏
d

dy
g−1(y)

󰀏󰀏󰀏 for all y ∈ Y0.
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In (4), note also that by the Inverse Function Theorem,

d

dy
g−1(y) =

󰀓 d

dx
g(x)

󰀏󰀏󰀏
x=g−1(y)

󰀔−1

.

We also have a multivariate version of above theorem. To state the theorem, suppose
g : Rd 󰀁→ Rd differentiable, where g takes the form of a vector of d functions:

g(x) =

󰀵

󰀹󰀷
g1(x)
...

gd(x)

󰀶

󰀺󰀸 .

Recall the Jacobian matrix of g is the d×d matrix with (i, j)th element given by ∂gi/∂xj,
where gi denotes the ith component of the function g. This matrix is denoted by ∂g/∂x:

∂g

∂x
=

󰀵

󰀹󰀷

∂g1
∂x1

· · · ∂g1
∂xd

...
...

∂gd
∂x1

· · · ∂gd
∂xd

󰀶

󰀺󰀸 .

The Jacobian of g at some point x is defined to be | det[∂g/∂x]|, i.e., the absolute value
of the determinant of the Jacobian matrix evaluated at x.

Theorem 1.7.2. Suppose X is a d-dimensional random vector with p.m.f. or p.d.f. fX .
Consider Y = g(X) for g : Rd 󰀁→ Rd. Let X0 := {x : fX(x) > 0} and Y0 := g(X0). Suppose
g is a one-to-one and continuously differentiable function on X0.

(1) If X is discrete, then Y has p.m.f. given by fY (y) = fX(g
−1(y)) for all y ∈ Y0.

(2) If X is continuous and in addition | det[∂g/∂x]| is nonzero on X0, then Y has p.d.f.
given by

fY (y) = fX(g
−1(y))

󰀏󰀏󰀏 det
󰁫∂g−1(y)

∂y

󰁬󰀏󰀏󰀏 for all y ∈ Y0.

In (2),
∂g−1(y)

∂y
=

󰀓∂g(x)
∂x

󰀔−1󰀏󰀏󰀏
x=g−1(y)

.

Note also
∂g−1(y)

∂y

󰀏󰀏󰀏
y=g(x)

=
󰀓∂g(x)

∂x

󰀔−1

.

If the function g is not one-to-one, we cannot apply above theorem. However, if the set
X0 = {x : fX(x) > 0} can be partitioned into subsets such that g is one-to-one on each
subset. We can use the following theorem.

Theorem 1.7.3. * Suppose X is a d-dimensional continuous random vector with p.d.f. fX .
Consider Y = g(X) for g : Rd 󰀁→ Rd. Let X0 := {x : fX(x) > 0}. Let X1, . . . ,Xm denote
the disjoint open subsets of X0 such that P(X ∈ ∪m

i=1Xi) = 1. Let Yi := g(Xi). Suppose g
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is a function on X0 and let g(i) denotes the restriction of g to Xi, i = 1, .2, . . . ,m. Assume
that for each i = 1, . . . ,m, g(i) is one-to-one and continuously differentiable with inverse h(i)

and the Jacobian of g(i) is nonzero on Xi. Then Y is a continuous random vector with p.d.f.
given by

fY (y) =
m󰁛

i=1

fX(h
(i)(y))

󰀏󰀏󰀏 det
󰁫∂h(i)(y)

∂y

󰁬󰀏󰀏󰀏 {y ∈ Yi}, for y ∈ g(∪m
i=1Xi).

Remark 1.7.1. * Consider a case whereX is a d-dimensional random vector and Y = g0(X)
for some g0 : Rd 󰀁→ Rq where q < d. Above theorems cannot be applied directly. One
possible solution is to construct a function g1 such that g = (g0, g1) satisfies the conditions of
above theorems, i.e., g : Rd 󰀁→ Rd. We then can find the density of g0(X) by marginalizingthe
out density of g1(X).

Theorem 1.7.4. (Linear transformation). Suppose X is a d-dimensional continuous
random vector with p.d.f. fX . Consider Y = AX + µ, where A is d× d nonsingular matrix
and µ is a d-dimensional vector. Let Y denote the range space of Y . Then Y is a continuous
random vector with p.d.f. given by

fY (y) =
1

| detA|fX(A
−1(y − µ)) for y ∈ Y .

Remark 1.7.2. In the discussion above, in order to correctly apply Theorem 1.7.1, 1.7.2,
1.7.3 and 1.7.4, it is critical to keep track of the support of the original random variable
(vector) X and the support of the transformed random variable (vector) Y .

1.8 Quantiles and Quantile Functions

Definition 1.8.1. (Quantiles). Let X be a random variable with c.d.f. F. For a given
value p ∈ (0, 1), the p quantile (or 100p percentile) of the distribution of X is defined to
be

inf{x : F (x) ≥ p},
that is, the smallest value of x such that F (x) ≥ p.

The quantile function of the distribution of X is the function Q : (0, 1) 󰀁→ R given by

Q(t) := inf{x : F (x) ≥ t}.

If the c.d.f. F is one-to-one (i.e. injective), then Q is simply F−1, the inverse function of
F . Throughout the note, even when a c.d.f. F is not one-to-one, we shall still use F−1 to
denote the quantile function associated with F , that is,

F−1(t) := inf{x : F (x) ≥ t}.
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Remark 1.8.1. * (1) If F is one-to-one, i.e., injective, then F−1◦F (x) = x and F ◦F−1(x) =
x; (2) For every 0 < p < 1, and x ∈ R, F ◦ F−1(p) ≥ p with equality if and only p is in the
range of F ; (3) p ≤ F (x) if and only if F−1(p) ≤ x;˙

Theorem 1.8.1. (Probability Integral Transformation). If X is a random variable
with continuous c.d.f. F . Let Y = F (X). The distribution of Y is the uniform distribution
on [0, 1].

Remark 1.8.2. The above theorem can be used to inspect if X follows some hypothesized
distribution F0 given a random sample {X1, . . . , Xn}. This is done by using {Y1, . . . , Yn}
where Yi = F0(Xi), and the empirical CDF of Yi

F̂Y (y) =
1

n

n󰁛

i=1

{Yi ≤ y}

to verify if F̂Y (y) approximately follows a 45-degree line on (0, 1) interval.

Corollary 1.8.1. (Quantile Transformation). If Y has the uniform distribution on [0, 1],
and let F be any c.d.f. with quantile function F−1. Then X = F−1(Y ) has c.d.f. F .

Remark 1.8.3. For all common continuous random variables, such as normal, t and F
random variables, their c.d.f. F is continuous and one-to-one. Therefore, for every 0 < p <
1, the p quantile of X is simply given by the value xp such that F (xp) = p, that is,

P(X ≤ xp) = p.

In statistical inference, for some small value α assuming the role of 1− p, it is a convention
to define the so-called upper-α quantile of X to be the value xα such that

P(X ≥ xα) = α.

Often α is chosen to be 0.01, 0.05 or 0.1 in the problems of constructing confidence intervals
and hypothesis testing.

For example, for normal distribution, the upper 0.5%, 2.5% and 5% quantiles are respec-
tively x0.5% = 2.58, x2.5% = 1.96 and x5% = 1.64.

Normal probabilities and quantiles:

P (N(0, 1) > x) P (|N(0, 1)| > x)
x = 0.00 0.50 1.00
x = 1.00 0.16 0.32
x = 1.64 0.050 0.100
x = 1.96 0.025 0.050
x = 2.00 0.023 0.046
x = 2.33 0.010 0.020
x = 2.58 0.005 0.010
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1.9 Some Common Discrete Distributions

1.9.1 Binomial Distributions

Definition 1.9.1. (Bernoulli Trials and Binomial Distributions). A sequence of trials,
where

• each trial results in a “success” or a “failure”,

• the trials are independent,

• the probability of “success,” denoted by p, 0 < p < 1, is the same on every trial.

Let X denote the number of successes out of n Bernoulli trials. Then X has a Binomial
distribution with parameter n and p. We write X ∼Bin(n, p). Its p.m.f. is given by

fX(x) =

󰀕
n

x

󰀖
px(1− p)n−x for x = 0, 1, 2, · · · , n

The mean and variance are E(X) = np,Var(X) = np(1 − p). The m.g.f. is MX(t) =
(1− p+ pet)n.

Example 1.9.1. Each of the following situations could be conceptualized as a binomial
experiment. Does each of them satisfy with the Bernoulli assumptions?

• We flip a fair coin 10 times and let X denote the number of tails in 10 flips. Here,
X ∼ Bin(n = 10, p = 0.5).

• In rural Kenya, the prevalence rate for HIV is estimated to be around 8 percent.
Let X denote the number of HIV infecteds in a sample of 740 individuals. Here,
X ∼ Bin(n = 740, p = 0.08).

• Parts produced by a certain company do not meet specifications (i.e., are defective)
with probability 0.001. Let X denote the number of defective parts in a package of
40. Then, X ∼ Bin(n = 40, p = 0.001).

Example 1.9.2. At an automobile plant, 15 percent of all paint batches sent to the
lab for chemical analysis do not conform to specifications. Assume the Bernoulli’s trials
assumptions hold the batches. Now suppose a shipment of 50 batches is examined. What
is the probability at last 40 batches are conforming?

1.9.2 Geometric Distributions

Suppose that the Bernoulli trials are continually observed. Let X denotes the trial at which
the first success occurs. Then X has a geometric distribution with parameter p. We write
X ∼Gem(p). Its p.m.f. is given by

fX(x) = p(1− p)x−1 for x = 1, 2, · · · .

The mean and variance are E(X) = 1
p
,Var(X) = 1−p

p2
. The m.g.f. is MX(t) =

pet

1−(1−p)et
, t <

− log(1− p).
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Note that X ∼Gem(p) has the memoryless property: for all nonnegative integers s and
t, P(X ≥ s + t|X ≥ t) = P(X ≥ s). In words, given that X is at least t, the probability
that X is at least s+ t is the same as if we were to look at X unconditionally being at least
s.

Example 1.9.3. At an automobile plant, 15 percent of all paint batches sent to the
lab for chemical analysis do not conform to specifications. Assume the Bernoulli’s trials
assumptions hold. Suppose a shipment is sent for analysis. What is the probability that
the third batch is found to be the first non-conforming batch?

1.9.3 Negative Binomial Distributions*

Suppose that the Bernoulli trials are continually observed. Let X denotes the number
of trials to observe the r-th success. Then X has a negative binomial distribution with
parameter r and p. We write X ∼NB(r, p). Its p.m.f. is given by

f(X = x|r, p) =
󰀕
x− 1

r − 1

󰀖
pr(1− p)x−r, x = r, r + 1, . . .

Its mean and variance are given by E(X) = r
p
,Var(X) = r(1−p)

p2
. The mgf MX(t) =

( pet

1−(1−p)et
)r, t < − log(1 − p). When r = 1, the NB(1, p) reduces to the geometric dis-

tribution Gem(p).

Example 1.9.4. At an automobile plant, 15 percent of all paint batches sent to the
lab for chemical analysis do not conform to specifications. Assume the Bernoulli’s trials
assumptions hold. Suppose a shipment is sent for analysis. What is the probability that no
more than three non-conforming batches will be observed among the first 30 batches sent
to the lab?

1.9.4 Poisson Distributions

Let the number of occurrences in a given continuous interval of time or space be counted.
A Poisson process enjoys the following properties (as time flows):

1. The number of occurrences of certain event in non-overlapping intervals are indepen-
dent random variables.

2. The probability of an occurrence in a sufficiently short interval is proportional to the
length of the interval.

3. The probability of 2 or more occurrences in a sufficiently short interval is zero.

Suppose that a process satisfies the above three conditions, and let X denote the number
of occurrences in an interval of length one. Our goal is to find an expression for fX(x) =
P (X = x), the p.m.f. of X, the probability that x such events occur.

Envision partitioning the unit interval [0, 1] into n subintervals, each of size 1/n. Now,
if n is sufficiently large (i.e., much larger than x), there can be at most one event occur in
each of these subintervals. There we can approximate the probability that X = x events
(occurences) occur in this unit interval by finding the probability that exactly one event
(occurrence) occurs in exactly x of these subintervals.
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• By Property (2), we know that the probability of one event in any one subinterval is
proportional to the subinterval’s length, say λ/n, where λ > 0 is the proportionality
constant.

• By Property (3), the probability of more than one occurrence in any subinterval is
zero (for n large).

• Consider the occurrence/non-occurrence of an event in each subinterval as a Bernoulli
trial. Then, by Property (1), we have a sequence of n Bernoulli trials, each with
probability of “success” p = λ/n. Thus, a binomial (approximate) calculation gives

P(X = x) ≈
󰀕
n

x

󰀖󰀓λ
n

󰀔x󰀓
1− λ

n

󰀔n−x

.

To improve the approximation for P (X = x), we let n get large without bound. One

can show that limn→∞ P (X = x) =
λxe−λ

x!
.

We say that X follows a Poisson distribution with parameter λ, with p.m.f.

f(X = x|λ) = e−λλx

x!
, x = 0, 1, . . . ; 0 ≤ λ < ∞

The mean and variance are E(X) = λ,Var(X) = λ. The m.g.f. is MX(t) = eλ(e
t−1). The

parameter λ can be viewed as the average number of occurrences in the unit interval.

Example 1.9.5. In a certain region in the northeast U.S., the number of severe weather
per year X is assumed to follow a Poisson distribution with mean λ = 1.5. What is the
probability there are four or more severe weather events in a given year?

1.10 Some Common Continuous Distributions

1.10.1 Uniform Distributions

A random variable X is said to have a uniform distribution from a to b (a < b) if its p.d.f.
is given by

f(x|a, b) = 1

b− a
[a,b](x).

We denote X ∼ U(a, b). Note the use of indicator function to keep track of the support.

Its mean and variance are given by E(X) = a+b
2
; Var(X) = (b−a)2

12
. Its m.g.f. is MX(t) =

ebt−eat

(b−a)t
. Note its c.d.f. is given by

FX(x) =

󰀻
󰁁󰀿

󰁁󰀽

0, x ≤ a
x−a
b−a

, a < x < b

1, x ≥ b.
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1.10.2 Exponential Distributions

f(x|β) = 1

β
e−x/β

[0,∞)(x), β > 0 is scale parameter.

We denote X ∼ Exp(β). Its c.d.f. is F (x) = 1− e−x/β for x > 0.
Its mean and variance are given by E(X) = β,Var(X) = β2. The m.g.f. is MX(t) =

1
1−βt

, t < β−1.
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Exponential distribution has memoryless property. Suppose that X ∼ Exp(β), and let
r and s be positive constants. Then

P (X > r + s | X > r) = P (X > s).

Example 1.10.1. “Time to event” studies are common in medical applications. One
recent study involved patients with leg ulcers. Some treatment was applied to the infected
area. Let X denote the time (in days) until the leg ulcer was completely healed. Suppose
X has an exponential distribution with mean β = 190. Find the probability the ulcer takes
longer than 100 days to heal.

1.10.3 Gamma Distributions
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Definition 1.10.1. (Gamma Function). The gamma function is a real function of t,
defined by

Γ(t) =

󰁝 ∞

0

yt−1e−ydy,

for all t > 0.
The gamma function satisfies the properties (i) Γ(1) = 1; (ii) Γ(1

2
) =

√
π; (iii) recursive

relationship
Γ(α) = (α− 1)Γ(α− 1),

for α > 1. From this fact, we can deduce that if α is an integer, then

Γ(α) = (α− 1)!

A random variable X is said to have a gamma distribution with parameters α > 0 and
β > 0 if its pdf is given by

fX(x) =
1

Γ(α)βα
xα−1e−x/β (x > 0)

Shorthand notation is X ∼ gamma(α, β). The family of gamma distributions is indexed by
two parameters: α = the shape parameter, β = the scale parameter. The following picture
shows this family is very flexible family of probability densities. Mean and variances are
given by E(X) = αβ; Var(X) = αβ2. Its m.g.f. is MX(t) = ( 1

1−βt
)α, t < β−1. Note that

gamma(α, β) is the exponential distribution with scale β.
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Theorem 1.10.1. If the random variables X1, . . . , Xk are independent and if each Xi ∼
gamma(αi, β), then the sum X1 + · · ·+Xk ∼ gamma(

󰁓k
i=1 αi, β)
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1.10.4 Chi-squared Distributions

Let p be a positive integer. In the gamma(α, β) family, when α = p/2, β = 2, we call the
resulting distribution a χ2 distribution with p degrees of freedom. We write X ∼ χ2(p).
The p.d.f. is given by

f(x|p) = 1

Γ(p/2)2p/2
x(p/2)−1e−x/2

[0,∞)(x)

Mean and variance are E(X) = p,Var(X) = 2p. Its m.g.f. is MX(t) = ( 1
1−2t

)p/2, t < 1/2.

Theorem 1.10.2. If the random variables X1, . . . , Xk are independent and if each Xi ∼
χ2(pi), then the sum X1 + · · ·+Xk ∼ χ2(

󰁓k
i=1 pi)
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1.10.5 Beta Distributions

A random variable X is said to have a beta distribution with parameters α > 0 and β > 0
if its p.d.f. is given by

f(x|α, β) = 1

B(α, β)
xα−1(1− x)β−1

[0,1](x).

The constant B(α, β) :=
󰁕 1

0
xα−1(1 − x)β−1dx = Γ(α)Γ(β)

Γ(α+β)
is called the beta function. The

family of beta distributions is useful for modeling densities supported on the unit interval
(0, 1). Its mean and variance are given by E(X) = α

α+β
,Var(X) = αβ

(α+β)2(α+β+1)
.

1.10.6 Normal Distributions

A random variable X is said to have a normal distribution if its p.d.f. is given by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (−∞ < x < ∞).

Shorthand notation is X ∼ N(µ, σ2). There are two parameters in the normal distribution:

the mean E(X) = µ and the variance Var(X) = σ2. Its m.g.f. is MX(t) = eµt+(σ2t2)/2.

We also let Φ(t) denote the c.d.f. of the standard normal random variable:

Φ(t) =

󰁝 t

−∞

1√
2π

e−
s2

2 ds.
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Note that Φ(t) does not have a closed form solution. However, probability table exists that
tabulates its values at different t. A software can readily compute its value.

Facts:

(a) The N(µ, σ2) p.d.f. is symmetric about µ; that is, for any a ∈ R, f(µ−a) = f(µ+a).

(b) The N(µ, σ2) p.d.f. has points of inflection (i.e., where curvature changes) located at
x = µ± σ.

(c) limx→±∞ fX(x) = 0.

Theorem 1.10.3. If X ∼ N(µ, σ2), then aX + b ∼ N(aµ+ b, a2σ2).

Corollary 1.10.1. If X ∼ N(µ, σ2), then X−µ
σ

∼ N(0, 1).

Theorem 1.10.4. If X ∼ N(0, 1), then X2 ∼ χ2(1).

1.10.7 The t distribution

Suppose that Z ∼ N(0, 1) and that W ∼ χ2(ν); Z and W are independent. Then the
random variable

X =
Z󰁳
W/ν

32



1 REVIEW MAT525, W. Li

has a t distribution with ν degrees of freedom. In notation, X ∼ t(ν). The p.d.f. of X is
given by

f(x|ν) =
Γ(ν+1

2
)

Γ(ν
2
)

1√
νπ

1

(1 + x2

ν
)(ν+1)/2

,−∞ < x < ∞, ν = 1, . . .

Its mean and variance are given by E(X) = 0, ν > 1; Var(X) = ν
ν−2

, ν > 2. The m.g.f. does
not exist.
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Facts:

(a) t distribution is continuous and symmetric about 0.

(b) As ν → ∞, t(ν) → N(0, 1). That is, when ν becomes larger, the t(ν) and N(0, 1)
distributions look more alike.

(c) Compared with N(0, 1), the t distribution is less peak and has more mass in both
tails.

1.10.8 The F distribution

Suppose that W1 ∼ χ2(ν1) and that W2 ∼ χ2(ν2), ν1, ν2 = 1, 2, . . .; W1 and W2 are indepen-
dent. Then the random variable

X =
W1/ν1
W2/ν2
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has a F distribution with ν1 (numerator) and ν2 (denominator) degrees of freedom. In
notation, X ∼ F (ν1, ν2).

The p.d.f. of X is given by

f(x|ν1, ν2) =
Γ(ν1+ν2

2
)

Γ(ν1/2)Γ(ν2/2)
(
ν1
ν2
)ν1/2

x(ν1−ν2)/2

(1 + ν1
ν2
x)(ν1+ν2)/2

[0,∞)(x).

Its mean and variance are given by E(X) = ν2
ν2−2

, ν2 > 2; Var(X) = 2ν1+ν2−2
ν1(ν2−4)

( ν2
ν2−2

)2, ν2 > 4.

The m.g.f. does not exist.
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Facts:

(a) F distribution is continuous and skewed to the right.

(b) If X ∼ F (ν1, ν2), then 1/X ∼ F (ν2, ν1).

(c) If X ∼ t(ν), then X2 ∼ F (1, ν).

1.10.9 Multivariate normal distribution

Let X denote a random vector in Rk. For a k × 1 vector µ, and a positive definite matrix
Σ > 0. The random vector X is said to have a multivariate normal distribution with mean
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µ and variance Σ if its p.d.f. is given by

f(x|µ,Σ) = 1

(2π)k/2(detΣ)1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)).

Its mean and variance are given by E(X) = µ; Var(X) = Σ. Its m.g.f. is given by
MX(t) = exp(µT t+ 1

2
tTΣt). In notation, we write X ∼ N(µ,Σ).

Special case 1: bivariate normal without correlation
To understand this definition, let’s consider the case k = 2, say two X1, X2 independent

normal random variables, where µ1, σ
2
1 are mean and variance of X1, and µ2, σ

2
2 are mean

and variance of X2, whose joint density is simply

f(x2, x2) =
1

2πσ1σ2

exp
󰀋
− 1

2

󰀅(x1 − µ1)
2

σ2
1

+
(x2 − µ2)

2

σ2
2

󰀆󰀌

Obviously in this case, X = (X1, X2)
T ∼ N(µ,Σ), where µ = (µ1, µ2)

T , and

Σ =

󰀕
Cov(X1, X1) Cov(X1, X2)
Cov(X2, X1) Cov(X2, X2)

󰀖
=

󰀕
σ2
1 0
0 σ2

2

󰀖
.

Special case 2: bivariate normal with correlation
More generally, to construct a pair of bivariate normal {X1, X2} such that X1 and X2

are correlated and each is a normal random variable: let

X1 = a1 + b1Z1 + c1Z2,

X2 = a2 + b2Z1 + c2Z2,

where Z1, Z2 are independent standard normal random variables. Note that µ1 = E(X1) =
a1, µ2 = E(X2) = a2, and σ2

1 = Var(X1) = b21 + c21, and σ2
2 = Var(X2) = b22 + c22, and

the covariance is σ12 = Cov(X1, X2) = b1b2 + c1c2. Using the linear transformation formula
Theorem 1.7.4, we can derive the joint density of (X1, X2) which is given by

f(x) = f(x1, x2) =
1

2π
det(Σ)−1/2 exp

󰀋
− 1

2
(x− µ)TΣ−1(x− µ)

󰀌
,

where µ = (µ1, µ2)
T and

Σ =

󰀕
σ2
1 σ12

σ12 σ2
2

󰀖
.

Due to the unique structure of this joint density, one key observation is that if X1 and
X2 are uncorrelated, i.e., σ12 = 0, then f(x) = fX1(x1)fX2(x2) holds, i.e., X1 and X2 are
independent. Recall, in general, uncorrelation does not imply independence.
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x1

−4
−2

0
2

4

x2

−4
−2

0
2
4

y

0.02
0.04
0.06
0.08

Figure 1: An example of bivariate normal, with µ1 = µ2 = 0, σ2
1 = σ2

2 = 2, σ12 = −1.

General case:
For k ≥ 2, we call a k-dimensional random vector Z the multivariate standard normal

random vector, if Z is a k-dimensional random vector that has the multivariate normal
density with the mean vector µ = (0, . . . , 0)T , and covariance matrix Σ = I the identity
matrix. One can show that if we generate k independent standard normal random variables
Z1, . . . , Zk, and put them as a vector Z = (Z1, . . . , Zk)

T , then Z ∼ N(0, I) which is the
standard multivariate normal distribution.

Indeed,

f (z1, . . . , zk) = f (z1) f (z2) · · · f (zk)

=
k󰁜

i=1

1√
2π

exp

󰀕
−z2i

2

󰀖

=
1

(2π)k/2
exp

󰀣
−1

2

k󰁛

i=1

z2i

󰀤

=
1

(2π)k/2
exp

󰀕
−zT z

2

󰀖

How about a multivariate normal distribution with some non-standard covariance ma-
trix? This can be achieved through the linear transformation: given a multivariate standard
normal random vector Z ∼ N(0, I), where I is k by k identity matrix. Let X = AZ +µ for
some nonsingular k × k matrix A and a vector of constant µ, then X ∼ N(µ,AAT ). This
can be verified by the Theorem 1.7.4. Here, the AAT will be the covariance matrix Σ.
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Some important properties of the multivariate normal distribution :

(1)*

If X =

󰀕
X1

X2

󰀖
∼ Normal

󰀗󰀕
µ1

µ2

󰀖
,

󰀕
Σ11 Σ12

Σ21 Σ22

󰀖󰀘
,

thenX1−Σ12Σ
−1
22 Σ21X2 X2 andX1|X2 ∼ N(µ1·2,Σ11·2), where µ1·2 = µ1+Σ12Σ

−1
22 (X2−µ2)

and Σ11·2 = Σ11 − Σ12Σ
−1
22 Σ21.

(2) Bivariate normal (an alternative construction). Let Z1, Z2 are independent normal.
For some given values µX , µY , σX > 0, σY > 0, 0 < ρ < 1, define X = σXZ1 + µX , Y =
σY (ρZ1+(1− ρ2)1/2Z2)+µY . Then (X, Y ) has bivariate normal distribution whose density
is given by

f(x, y) =
1

2πσXσY

󰁳
1− ρ2

exp
󰁱
− 1

2(1− ρ2)

󰁫󰀓x− µX

σX

󰀔2

+
󰀓y − µY

σY

󰀔2

− 2ρ
󰀓x− µX

σX

󰀔󰀓y − µY

σY

.
󰀔󰁬󰁲

In particular, one can see ρ in fact is the correlation coefficient between X and Y . Also,
f(x, y) = fX|Y (x|y)fY (y), fX|Y ∼ N(µX + ρσX

σY
(y − µY ), σ

2
X(1 − ρ2)) and fY ∼ N(µY , σ

2
Y ).

Similarly, f(x, y) = fY |X(y|x)fX(x), fY |X ∼ N(µY + ρ σY

σX
(x − µX), σ

2
Y (1 − ρ2)) and fX ∼

N(µX , σ
2
X).

(3) Assuming X ∼ N(µ,Σ) where Σ > 0, then if Y = AX + b for some matrix A and a
vector of constant b, then Y ∼ N(Aµ+ b, AΣAT ). For AΣAT > 0, it must be that A is full
row rank.

(4) If X1, . . . , Xk are independent normal random variables, then any linear combination
of X1, . . . , Xk (i.e., any aTX for nonzero constant vector a) is also a normal random variable.

(5) X = (X1, . . . , Xk)
T is multivariate normal if and only if aTX is normal for all nonzero

constant vectors a.

(6) If X = (X1, . . . , Xk)
T is multivariate normal, then each component Xi is also normal.

The converse is not true in general unless X1, . . . , Xk are also independent.

(7) If a random vector X has multivariate normal distribution, then two or more of its
components that are (pairwise) uncorrelated are also (mutually) independent. As a conse-
quence, pairwise independence of the components will imply the (mutual) independence of
the components.
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1.10.10 Some numerical commands

The corresponding Python commands uses the scipy.stats module.
For a given value x, compute P (X = x) (p.m.f or p.d.f.):

Distribution R Python
Bin(n, p0) dbinom(x, n, p0) scipy. stats. binom. pmf(x, n, p0)
Pois(λ) dpois(x,λ) scipy. stats. poisson. pmf(x,λ)
N(0, 1) dnorm(x) scipy. stats. norm. pdf(x, loc = 0, scale = 1)
χ2
r dchisq(x, r) scipy. stats. chi2. pdf(x, df = r)

tr dt(x, r) scipy. stats. t. pdf(x, df = r)
Fr,k df(x, r, k) scipy. stats. f. pdf(x, dfn = r, dfd = k)

For a given value q, compute P (X ≤ q) :

Distribution R Python
Bin(n, p0) pbinom(q, n, p0) scipy. stats. binom. cdf(q, n, p0)
Pois(λ) ppois(q,λ) scipy. stats. poisson. cdf(q,λ)
N(0, 1) pnorm(q) scipy. stats. norm. cdf(q, loc = 0, scale = 1)
χ2
r pchisq(q, r) scipy. stats. chi2. cdf(q, df = r)

tr pt(q, r) scipy. stats. t. cdf(q, df = r)
Fr,k pf(q, r, k) scipy. stats. f. cdf(q, dfn = r, dfd = k)

For a given probability p, compute the x such that P (X ≤ x) = p :

Distribution R Python
Bin(n, p0) qbinom(p, n, p0) scipy. stats. binom. ppf(p, n, p0)
Pois(λ) qpois(p,λ) scipy. stats. poisson. ppf(p,λ)
N(0, 1) qnorm(p) scipy. stats. norm. ppf(p, loc = 0, scale = 1)
χ2
r qchisq(p, r) scipy. stats. chi2. ppf(p, df = r)

tr qt(p, r) scipy. stats. t. ppf(p, df = r)
Fr,k qf(p, r, k) scipy. stats. f. ppf(p, dfn = r, dfd = k)

1.10.11 Truncated and Censored Distributions

to add...

38



6 APPENDIX: LIST OF DISTRIBUTIONS MAT525, W. Li

6 Appendix: List of Distributions

Some Common Discrete Distributions

For r any real number and n a nonnegative integer, define
󰀃−r

n

󰀄
= (−r)!

(−r−n)!n!
which is un-

derstood as (−r)(−r−1)···(−r−n+1)
n!

= r(r+1)···(r+n−1)
n!

(−1)n. Thus
󰀃−r

n

󰀄
= (−1)n

󰀃
r+n−1

n

󰀄
. Also, it

holds that (1 + x)−r =
󰁓∞

n=0

󰀃−r
n

󰀄
xn for |x| < 1.

Bernoulli

• p.m.f. P(X = x|p) = px(1− p)1−x, x = 0, 1; 0 ≤ p ≤ 1

• E(X) = p,Var(X) = p(1− p)

• m.g.f. MX(t) = 1− p+ pet; c.f. ψX(t) = 1− p+ peit

Binomial(n, p)

• p.m.f. P(X = x|n, p) =
󰀃
n
x

󰀄
px(1− p)n−x, x = 0, . . . , n; 0 ≤ p ≤ 1

• E(X) = np,Var(X) = np(1− p)

• m.g.f. MX(t) = (1− p+ pet)n; c.f. ψX(t) = (1− p+ peit)n

Discrete uniform

• p.m.f. P(X = x|N) = 1
N
, x = 1, . . . , N ;N = 1, 2, . . .

• E(X) = N+1
2

,Var(X) = (N+1)(N−1)
12

• m.g.f. MX(t) =
1
N

󰁓N
i=1 e

it

Geometric(p)
Let X denote the number of trial to observe the first success in a sequence of independent
Bernoulli(p) trials.

• p.m.f. P(X = x|p) = p(1− p)x−1, x = 1, 2, . . . ; 0 ≤ p ≤ 1

• E(X) = 1
p
,Var(X) = 1−p

p2

• m.g.f. MX(t) =
pet

1−(1−p)et
, t < − log(1− p)

• notes: (1) Y = X − 1 is negative binomial(1, p). (2) Memoryless: P (X > s|X > t) =
P (X > s− t).

Hypergeometric
The population consists of N items, M of which are classified as successes. Let X denote
the number of successes in the K random draws without replacement.

• p.m.f. P(X = x|N,M,K) =
󰀃
M
x

󰀄󰀃
N−M
K−x

󰀄
/
󰀃
N
K

󰀄
, x = 0, . . . ,M ∧K; M − (N −K) ≤ x ≤

M ∧K; N,M,K ≥ 0
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• E(X) = KM
N

,Var(X) = KM
N

(N−M)(N−K)
N(N−1)

• notes: (1) If K ≪ M and N , the range x = 0, 1, . . . , K will be appropriate. (2) The

identity holds that
󰁓M∧K

x=0

󰀃
M
x

󰀄󰀃
N−M
K−x

󰀄
=

󰀃
N
K

󰀄
.

Negative binomial(r, p)
Let Y denote the number of failures before the r-th success in a sequence of independent
Bernoulli(p) trials.

• p.m.f. P(Y = y|r, p) =
󰀃
r+y−1

y

󰀄
pr(1− p)y; y = 0, 1, . . . ; 0 ≤ p ≤ 1

• E(Y ) = r(1−p)
p

,Var(Y ) = r(1−p)
p2

• m.g.f. MY (t) = ( p
1−(1−p)et

)r, t < − log(1− p)

• notes: (1) The identity holds
󰀃
r+y−1

y

󰀄
(−1)y =

󰀃−r
y

󰀄
for any real r. (2) Let X = Y + r

be the number of trials to observe the r-th success. P (X = x|r, p) =
󰀃
x−1
r−1

󰀄
pr(1 −

p)x−r, x = r, r+ 1, . . ., E(X) = r
p
,Var(X) = r(1−p)

p2
. The mgf MX(t) = ( pet

1−(1−p)et
)r, t <

− log(1− p).

Poisson(λ)

• p.m.f. P(X = x|λ) = e−λλx

x!
, x = 0, 1, . . . ; 0 ≤ λ < ∞

• E(X) = λ,Var(X) = λ

• m.g.f. MX(t) = eλ(e
t−1)

Some Common Continuous Distributions

Some facts
The gamma function is defined as Γ(α) =

󰁕∞
0

tα−1e−tdt for some α > 0. It holds Γ(α+1) =

αΓ(α), Γ(1) = 1,Γ(1
2
) =

√
π. The identity holds

󰁕∞
0

xα−1e−x/βdx = βαΓ(α). For any posi-

tive integer n, Γ(n) = (n− 1)! and Γ(2n+1
2

) = (2n)!
22nn!

√
π.

Beta(α, β)

• p.d.f. f(x|α, β) = 1
B(α,β)

xα−1(1− x)β−1
[0,1](x);α > 0, β > 0.

• c.d.f. F (x) = 1
B(α,β)

󰁕 x

0
uα−1(1−u)β−1du = Bx(α,β)

B(α,β)
, where Bx(α, β) =

xα

α
G(α, 1−β;α+

1, x). Here G(a, b; r, x) is the Gauss hypergeomeric function defined as
󰁓∞

k=0
(a)k(b)k
(r)k

xk

k!

(converges for |x| < 1), (z)k is ascending factorial z(z + 1) · · · (z + k − 1).

• E(X) = α
α+β

,Var(X) = αβ
(α+β)2(α+β+1)

.

• m.g.f. MX(t) = 1 +
󰁓∞

k=1(
󰁔k−1

r=0
α+r

α+β+r
) t

k

k!
, E(Xn) = B(α+n,β)

B(α+β)
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• notes: (1) B(α, β) := Γ(α)Γ(β)
Γ(α+β)

. (2) If X ∼Beta(α, β), then 1 −X ∼Beta(β,α). (3) If

X ∼Beta(α, 1), then − log(X) ∼ exponential dist with scale parameter equal to α−1.

Cauchy(θ, σ)

• p.d.f. f(x|θ, σ) = 1
πσ

1
1+(x−θ

σ
)2
;−∞ < x < ∞,−∞ < θ < ∞, σ > 0 is scale parameter.

• E(X),Var(X) do not exist.

• m.g.f. MX(t) does not exist.

• notes: (1) special case of t-distribution, where degrees of freedom=1. (2) If X and Y
are independent N(0, 1), X/Y is Cauchy.

Chi squared(p)

• p.d.f. f(x|p) = 1
Γ(p/2)2p/2

x(p/2)−1e−x/2
[0,∞)(x); p = 1, 2, . . .

• E(X) = p,Var(X) = 2p

• m.g.f. MX(t) = ( 1
1−2t

)p/2, t < 1/2

• notes: (1) Special cases of the gamma distribution. (2) Let Z be standard normal
random variable, then Z2 has the chi squared distribution χ2 with degree of freedom
1. (2) If the random variables Z1, . . . , Zd are i.i.d. standard normal, then

󰁓d
i=1 Z

2
i has

the χ2 distribution with d degrees of freedom.

Double exponential (Laplace)(µ, σ)

• p.d.f. f(x|µ, σ) = 1
2σ
e−|x−µ|/σ;−∞ < x < ∞,−∞ < µ < ∞; σ > 0

• c.d.f. F (x|µ, σ) = 1
2
e

x−µ
σ for x ≤ µ; 1− 1

2
e−

(x−µ)
σ for x ≥ µ.

• E(X) = µ,Var(X) = 2σ2

• m.g.f. MX(t) =
eµt

1−(σt)2
, |t| < σ−1

• notes: (1) The double exponential distribution is a symmetric distribution with much
fatter tails than the normal but still retains all of its moments. (2) It is not bell-
shaped, and has a peak (non-differentiability) at the point x = µ. (3) |X − µ| is
exponential distribution(σ).

Exponential(β)

• p.d.f. f(x|β) = 1
β
e−x/β

[0,∞)(x); β > 0 is scale parameter.

• c.d.f. F (x) = 1− e−x/β

• E(X) = β,Var(X) = β2

• m.g.f. MX(t) =
1

1−βt
, t < β−1
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• notes: (1) β−1 is called the rate parameter. (2) Has the memoryless property. (3)
Special case of gamma distribution. (4) X1/γ is Weibull.

F

• p.d.f. f(x|ν1, ν2) =
Γ(

ν1+ν2
2

)

Γ(ν1/2)Γ(ν2/2)
(ν1
ν2
)ν1/2 x(ν1−ν2)/2

(1+
ν1
ν2

x)(ν1+ν2)/2 [0,∞)(x), ν1, ν2 = 1, . . .

• E(X) = ν2
ν2−2

, ν2 > 2; Var(X) = 2ν1+ν2−2
ν1(ν2−4)

( ν2
ν2−2

)2, ν2 > 4

• m.g.f. does not exist.

• notes: (1) Fν1,ν2 = (χ2
ν1
/ν1)/(χ

2
ν2
/ν2) where the two χ

2s are independent. (2) F1,ν = t2ν .
(3) ν1Fν1,ν2 → χ2

ν1
if ν2 → ∞. (4) If X ∼ Fν1,ν2 , then X−1 ∼ Fν2,ν1 .

Gamma(α, β)

• p.d.f. f(x|α, β) = 1
Γ(α)βαx

α−1e−x/β
[0,∞)(x);α, β > 0 are shape and scale parameters.

• c.d.f. F (x|α, β) = Γ( x
β
;α)

Γ(α)
=

󰁕 x/β
0 e−ttα−1dt

Γ(α)
.

• E(X) = αβ; Var(X) = αβ2

• m.g.f. MX(t) = ( 1
1−βt

)α, t < β−1, E(Xn) = βn Γ(α+n)
Γ(α)

; c.f. ψX(t) = ( 1
1−βit

)α

• notes: (1) Special cases are exponential (α = 1) and chi squared χ2(p) (α = p/2, β =
2). (2) Gamma is a scale family in the second parameter, thus Gamma(α, β)/β =
Gamma(α, 1). (3) The inverted gamma distribution IG(α, β) is defined by (Gamma(α, β))−1.

Inverted Gamma(α, β)

• p.d.f. f(x|α, β) = 1
Γ(α)βαx

−(α+1)e−1/(xβ)
[0,∞)(x);α, β > 0 are shape and scale param-

eters.

• E(X) = 1
β(α−1)

; Var(X) = 1
β2(α−1)2(α−2)

• notes: The inverted Gamma X is obtained from X = Y −1 where Y ∼ gamma(α, β)
with shape and scale α, β > 0.

Lognormal(µ, σ2)

• p.d.f. f(x|µ, σ2) = 1√
2πσ

e−(log x−µ)2/(2σ2)
x [0,∞)(x), −∞ < µ < ∞, σ > 0.

• E(X) = eµ+(σ2/2); Var(X) = e2(µ+σ2) − e2µ+σ2

• m.g.f. does not exist. E(Xn) = enµ+(n2σ2)/2

• notes: Exits another distribution with the same moments.

Normal(µ, σ2)

• p.d.f. f(x|µ, σ2) = 1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x < ∞,−∞ < µ < ∞, σ > 0
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• E(X) = µ; Var(X) = σ2

• m.g.f. MX(t) = eµt+(σ2t2)/2; c.f. ψX(t) = eiµt−(σ2t2)/2

• notes: If X ∼ N(µ, σ2),then aX + b ∼ N(aµ+ b, a2σ2) for constants a, b.

Student’s t

• p.d.f. f(x|ν) = Γ( ν+1
2

)

Γ( ν
2
)

1√
νπ

1

(1+x2

ν
)(ν+1)/2

,−∞ < x < ∞, ν = 1, . . .

• E(X) = 0, ν > 1; Var(X) = ν
ν−2

, ν > 2

• m.g.f. does not exist. E(Xn) =
Γ(n+1

2
)Γ( ν−n

2
)√

πΓ( ν
2
)

νn/2 if n < ν and even; E(Xn) = 0 if n < ν

and odd.

• notes: (1) F1,ν = t2ν ; (2) t(1) is the standard Cauchy distribution; (3) Z is standard
normal random variable, X has chi squared distribution with ν degree of freedom. If
X and Z are independent, then Z√

X/ν
has t distribution with ν degree of freedom.

Uniform(a,b)

• p.d.f. f(x|a, b) = 1
b−a [a,b](x).

• E(X) = a+b
2
; Var(X) = (b−a)2

12

• m.g.f. MX(t) =
ebt−eat

(b−a)t
; c.f. ψX(t) =

eibt−eiat

i(b−a)t

• notes: (1) When a = 0, b = 1, this is a special case of the beta (α = β = 1). (2) If
X ∼ Uniform([0, 1]), then − log(X) ∼ gamma(1, 1).

Weibull(γ, β)

• p.d.f. f(x|γ, β) = γ
β
xγ−1e−xγ/β

[0,∞)(x), γ > 0, β > 0.

• E(X) = β1/γΓ(1 + 1
γ
); Var(X) = β2/γ(Γ(1 + 2

γ
)− Γ2(1 + 1

γ
))

• m.g.f. exists only for γ ≥ 1; E(Xn) = βn/γΓ(1 + n
γ
)

• notes: (1) When γ = 1, this becomes exponential distribution. (2) Weibull(γ, β) =
(gamma(1, β))1/γ. (3) The identity holds

󰁕∞
0

xγ−1 exp(−xγ

β
)dx = β

γ
.

Some Common Multivariate Distributions

Multivariate normal(µ,Σ)
Let X denote a random vector in Rk.

• p.d.f. f(x|µ,Σ) = 1
(2π)k/2(detΣ)1/2

exp(−1
2
(x− µ)TΣ−1(x− µ)),Σ > 0.

• E(X) = µ; Var(X) = Σ.
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• m.g.f. MX(t) = exp(µT t+ 1
2
tTΣt); c.f. ψX(t) = exp(iµT t− 1

2
tTΣt)

• notes: (1)

If X =

󰀕
X1

X2

󰀖
∼ Normal

󰀗󰀕
µ1

µ2

󰀖
,

󰀕
Σ11 Σ12

Σ21 Σ22

󰀖󰀘
,

then X1 − Σ12Σ
−1
22 Σ21X2 X2 and X1|X2 ∼ N(µ1·2,Σ11·2), where µ1·2 = µ1 +

Σ12Σ
−1
22 (X2 − µ2) and Σ11·2 = Σ11 − Σ12Σ

−1
22 Σ21.

(2) Bivariate normal. Let Z1, Z2 are independent normal. For some given values
µX , µY , σX > 0, σY > 0, 0 < ρ < 1, define X = σXZ1 + µX , Y = σY (ρZ1 + (1 −
ρ2)1/2Z2) + µY , then (X, Y ) has bivariate normal distribution whose density is given
by

f(x, y) =
1

2πσXσY

󰁳
1− ρ2

exp
󰁱
− 1

2(1− ρ2)

󰁫󰀓x− µX

σX

󰀔2

+
󰀓y − µY

σY

󰀔2

− 2ρ
󰀓x− µX

σX

󰀔󰀓y − µY

σY

󰀔󰁬󰁲

Also, f(x, y) = fX|Y (x|y)fY (y), fX|Y ∼ N(µX + ρσX

σY
(y − µY ), σ

2
X(1 − ρ2)) and fY ∼

N(µY , σ
2
Y ). Similarly, f(x, y) = fY |X(y|x)fX(x), fY |X ∼ N(µY + ρ σY

σX
(x− µX), σ

2
Y (1−

ρ2)) and fX ∼ N(µX , σ
2
X).

(3) Assuming X ∼ N(µ,Σ) where Σ > 0, then if Y = AX + b for some matrix A and
a vector of constant b, then Y ∼ N(Aµ + b, AΣAT ). For AΣAT > 0, it must be that
A is full row rank.
(4) If X1, . . . , Xk are independent normal random variables, then any linear combina-
tion of X1, . . . , Xk is also a normal random variable.
(5) X = (X1, . . . , Xk)

T is multivariate normal if and only if aTX is normal for all
nonzero constant vectors a.
(6) If X = (X1, . . . , Xk)

T is multivariate normal, then each component Xi is also nor-
mal. The converse is not true in general unless X1, . . . , Xk are also independent.
(7) If a random vector X has multivariate normal distribution, then two or more
of its components that are (pairwise) uncorrelated are also (mutually) independent.
As a consequence, pairwise independence of the components will imply the (mutual)
independence of the components.

Multinomial(n; p1, . . . , pk)
Multinomial distribution models the outcomes of tossing a k-sided die for n times.

• pdf. f(x1, . . . , xk|n; p1, . . . , pk) =
󰀃

n
x1,...,xk

󰀄
(
󰁔k

i=1 p
xi
i ) (

󰁓k
i=1 xi = n).

• E(Xi) = npi; var(Xi) = npi(1− pi).

• notes: (1)
󰀃

n
x1,...,xk

󰀄
is the multinomial coefficient (the number of ways to divide a set

of size n =
󰁓k

i=1 xi into subsets with sizes x1 up to xk).
(2) (p1 + · · ·+ pk)

n =
󰁓

x1+···+xk=n
n!

x1!···xk!
px1
1 · · · pxk

k .

(3) For i ∕= j, Xi|Xj ∼Binomial(n−Xj,
pi

1−pj
), cov(Xi, Xj) = −npipj.

(4) SupposeXi ∼ Poisson(λi), i = 1, . . . , k, are independent, then P (X1, . . . , Xk|
󰁓k

i=1 Xi =
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n) = Multinorm(n; λ1󰁓
i λi

, . . . , λk󰁓
i λi

)

(5) When n = 1, f(x1, . . . , xk|1; p1, . . . , pk) = (
󰁓k

i=1 xi = 1)
󰁔k

i=1 p
(xi=1)

i . Since
(x1, . . . , xk) can take k states, we think of x as being a scalar categorical random
variables with k possible values. This gives categorical distribution (multinoulli distri-
bution) using the notation Cat(x|p1, . . . , pk) = Multinomial(x1, . . . , xk|1, p1, . . . , pk).
That is when X ∼ Cat(p1, . . . , pk), P (X = j|p1, . . . , pk) = pj.

Dirichlet(α1, . . . ,αk)

Dirichlet distribution is a multivariate generalization of beta distribution. Let α0 =
󰁓k

i=1 αi.

• pdf. f(x1, . . . , xk) =
Γ(α0)󰁔
i Γ(αi)

󰁔
i x

αi−1
i {xi > 0,

󰁓
i xi = 1}.

• E(Xi) =
αi

α0
; var(Xi) =

αi(α0−αi)

α2
0(α0+1)

; mode(Xi) =
αi−1
α0−k

• notes: (1) If X ∼ Dir(α1, . . . ,αk), then X1 ∼ beta(α1,
󰁓

i αi − α1).
(2) If X ∼ Dir(α1, . . . ,αk), then Xi = Yi/

󰁓
i Yi where Yi, i = 1, . . . , k are independent

gamma(αi, 1).
(3) IfX ∼ Dir(α1, . . . ,αk), then (X1, . . . , Xi+Xj, . . . , Xk) ∼ Dir(α1, . . . ,αi+αj, . . . ,αk).
(4) IfX ∼ Dir(α1, . . . ,αk), given two partitions A, B of index, then (

󰁓
i∈A Xi,

󰁓
i∈B Xi) ∼

Dir(
󰁓

i∈A αi,
󰁓

i∈B αi), i.e.,
󰁓

i∈A Xi ∼ beta(
󰁓

i∈A αi,
󰁓

i∈B αi) .
(5) Conditional distribution of a subvector given remaining elements is also Dirichlet.
(6) Cov(Xi, Xj) = − αiαj

α2
0(α0+1)

, i ∕= j.

(7) Large αi > 1 values push the xi to some central value, where smaller αi < 1
values push xi to the corners (xi tending 0). If all αi are equal, then the distribu-
tion is symmetric. If α1 = · · · = αk = 1, the points are uniformly distributed. If
α1 = · · · = αk → ∞, then x1 = · · · = xk = 1/k with probability 1.
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